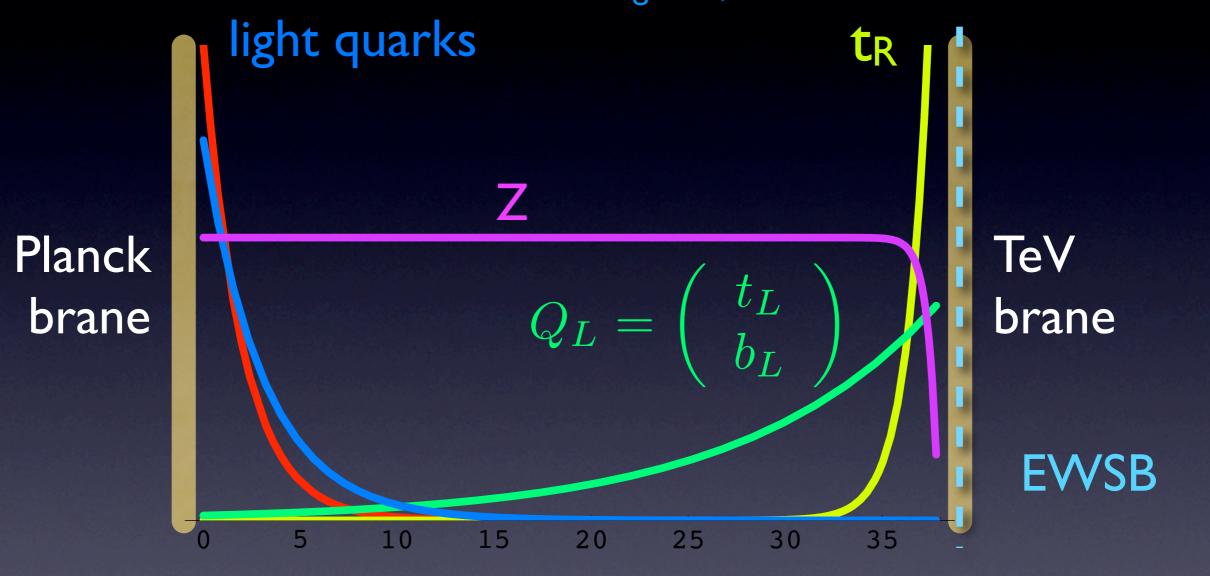
The flavor of the holographic pGB

Andreas Weiler Brookhaven Forum 2008

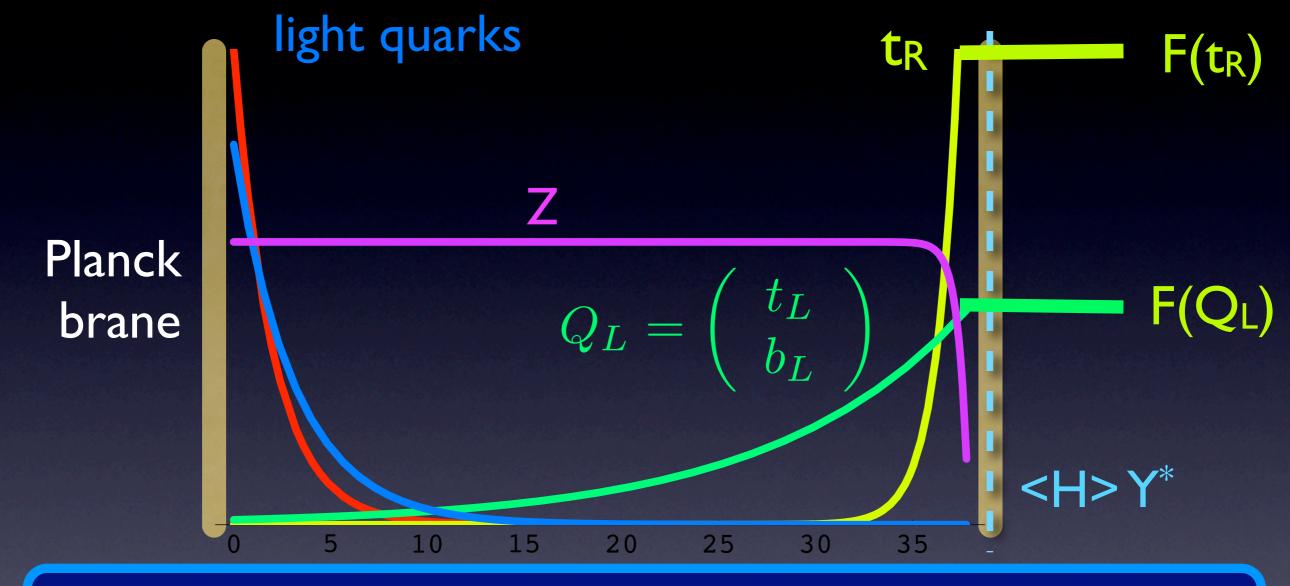
Cornell University


based on papers with:

C. Csaki and A. Falkowski (pGB flavor, U(1)'s);

C. Csaki, Y. Grossman, G. Perez, and Z. Surujon

Hierarchies without symmetries


Arkani-Hamed, Schmaltz; Grossman, Neubert; Gherghetta, Pomarol

warped extra dimensions as a theory of flavor

c = bulk mass

Wavefunction overlap generates hierarchies

F = wave function @ IR brane:

$$F \sim (\text{TeV/Planck})^{2c-1}$$
 c > 1/2,

c < 1/2

$$F \sim \sqrt{(1-2c)}$$

RS has a flavor problem

LR chiral contributions to CPV in K- \underline{K} mixing generically require $m_{KK} > 11 \text{ TeV}^+$

But there is also fine-tuning in EWSB...

+ terms and conditions apply

(scalar bulk Higgs with less perturbative control m > 5 TeV possible)

RS and little hierarchy problem

Precision electroweak data suggests o light Higgs ($m_H < 200 \text{ GeV}$) o (S,T,U,...) new contributions $\Lambda > 5 \text{ TeV}$

RS and little hierarchy problem

Precision electroweak data suggests

- o light Higgs (m_H < 200 GeV)
- o (S,T,U,...) new contributions $\Lambda > 5$ TeV

Large UV sensitive contribution to Higgs mass. Top loops e.g. induce

$$m_H^2 \sim -3 \lambda_t^2 \frac{1}{8\pi^2} \Lambda^2$$

Significant fine-tuning if not taken care of: RS with Higgs on the brane or scalar bulk Higgs suffers from little hierarchy problem!

Solution: pGB Higgs models

Simple model with

Agashe, Contino, Pomarol 05

o custodial symmetry

o A_5 zero mode $\in SO(5)/SO(4) = Higgs$

o small corrections to S,T,U, Zbb

$$y = R_{uv}$$

 $y = R_{ir}$

Planck brane

AdS₅ $SO(5)xU(1)_x$

TeV brane

$$SU(2)\times U(1)_{Y}$$

Solution: pGB Higgs models

Simple model with

o custodial symmetry

o A_5 zero mode $\in SO(5)/SO(4) = Higgs$

o sr

Dual to pGB composite Higgs (Georgi, Kaplan '83)

Rir

Agashe, Contino, Pomarol 05

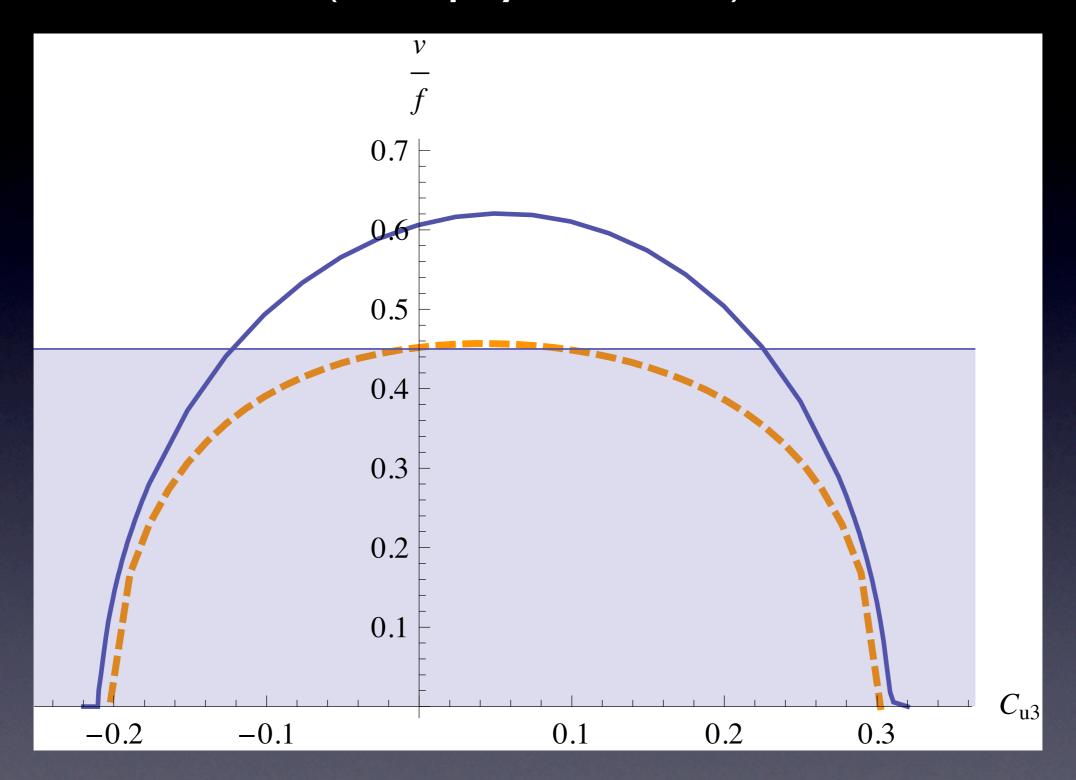
Planck brane

AdS₅ $SO(5)xU(1)_x$

TeV brane

$$SU(2)\times U(1)_{Y}$$

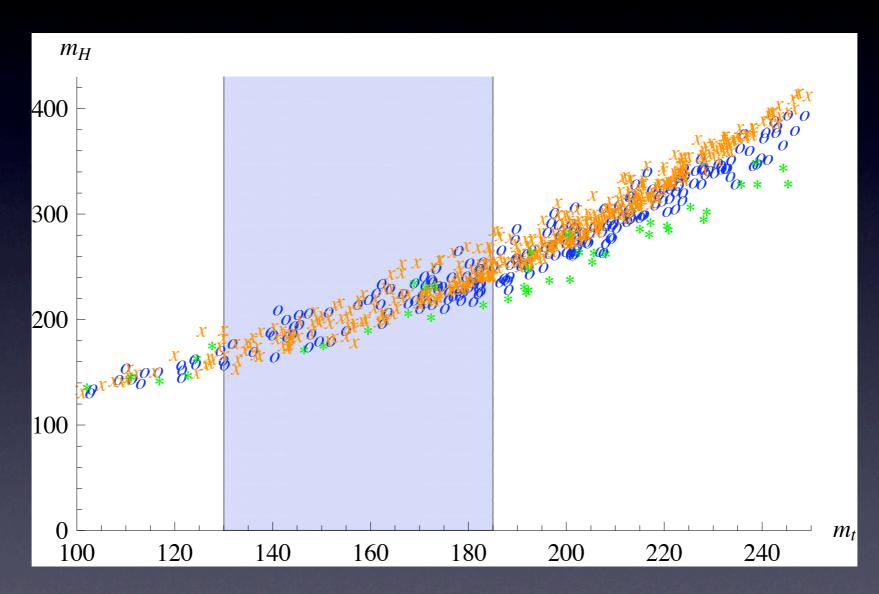
$$SO(4)\times U(1)_{\times}$$


Calculable radiative EWSB

 A_5 = Higgs : Non-local Coleman-Weinberg induces potential and $\langle A_5 \rangle \neq 0$

$$V(v) = \frac{3}{32\pi^2} \int_0^\infty dt t \left[-4\log \rho_t(-t) + 2\log \rho_W(-t) + \log \rho_Z(-t) \right]$$

UV finite, depends on 5D fermion mass sector


<H>/ (new physics scale)

cu3: bulk mass of top

Realistic EWSB only for correlated parameter set

Fermion Masses in Gauge-Higgs models

 A_5 = Higgs being a gauge field couples only to fields in the same multiplet.

Add boundary mixing terms:

Zero modes lives in multiple representations

→ kinetic mixing.

Yukawa = bulk gauge coupling g*

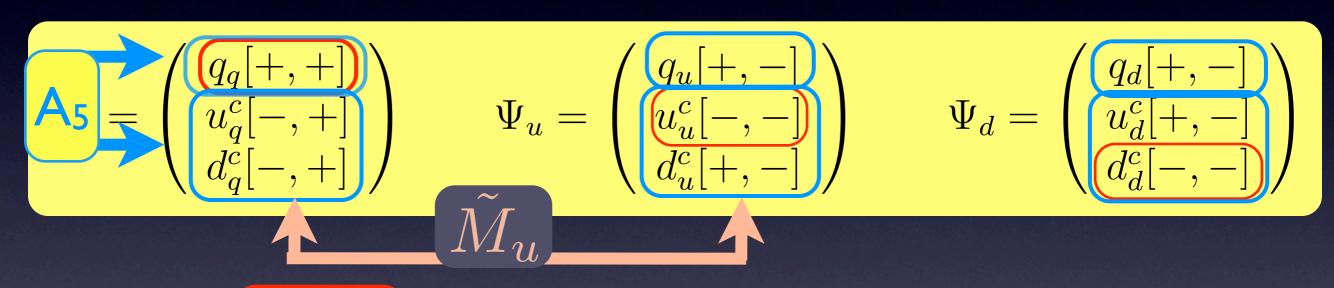
Csaki, Falkowski, AW

Some freedom to embed fermion content Example here: 4 (spinor) of SO(5)

$$\Psi_{q} = \begin{pmatrix} q_{q}[+,+] \\ u_{q}^{c}[-,+] \\ d_{q}^{c}[-,+] \end{pmatrix} \qquad \Psi_{u} = \begin{pmatrix} q_{u}[+,-] \\ u_{u}^{c}[-,-] \\ d_{u}^{c}[+,-] \end{pmatrix} \qquad \Psi_{d} = \begin{pmatrix} q_{d}[+,-] \\ u_{d}^{c}[+,-] \\ d_{d}^{c}[-,-] \end{pmatrix}$$

l) = chiral zero modes

Csaki, Falkowski, AW

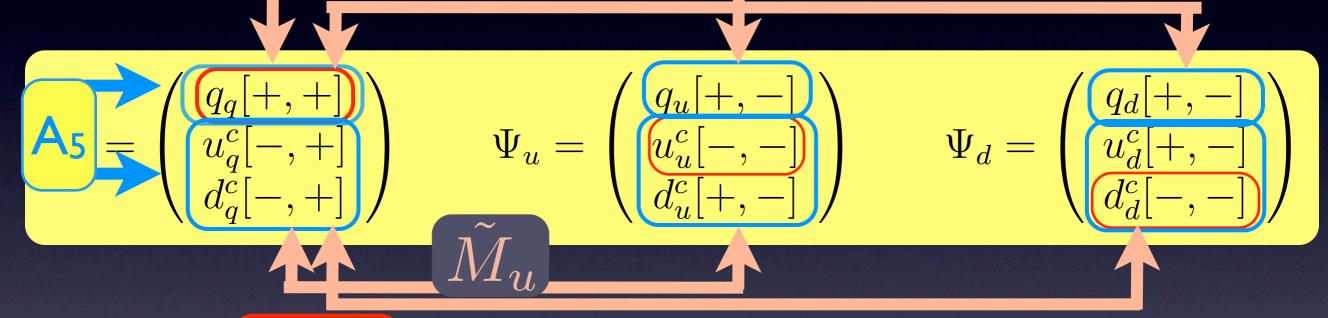

Some freedom to embed fermion content Example here: 4 (spinor) of SO(5)

$$\Psi_{u} = \begin{pmatrix} q_{q}[+,+] \\ u_{q}^{c}[-,+] \\ d_{q}^{c}[-,+] \end{pmatrix} \qquad \Psi_{u} = \begin{pmatrix} q_{u}[+,-] \\ u_{u}^{c}[-,-] \\ d_{u}^{c}[+,-] \end{pmatrix} \qquad \Psi_{d} = \begin{pmatrix} q_{d}[+,-] \\ u_{d}^{c}[+,-] \\ d_{d}^{c}[-,-] \end{pmatrix}$$

- I) = chiral zero modes
- 2) <A₅> marries fields in same multiplet

Csaki, Falkowski, AW

Some freedom to embed fermion content Example here: 4 (spinor) of SO(5)



- 1) = chiral zero modes
- 2) <A₅> marries fields in same multiplet
- 3) SO(4) invariant brane mixings mix multiplets

$$\mathcal{L}_{IR} = -\left(\frac{R}{R'}\right)^4 \left[\tilde{m}_u \chi_{q_q} \psi_{q_u} + \tilde{m}_d \chi_{q_q} \psi_{q_d} + \tilde{M}_u (\chi_{u_q^c} \psi_{u_u^c} + \chi_{d_q^c} \psi_{d_u^c}) + \tilde{M}_d (\chi_{u_q^c} \psi_{u_d^c} + \chi_{d_q^c} \psi_{d_d^c}) \right]$$

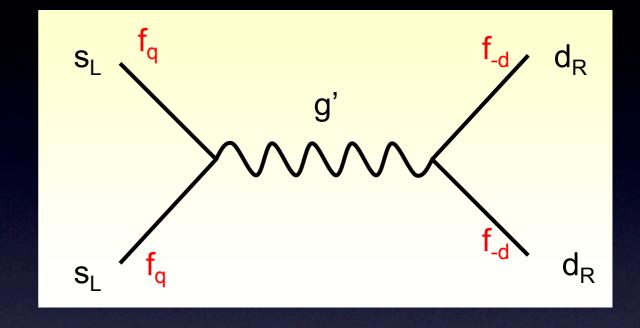
Csaki, Falkowski, AW

Some freedom to embed fermion content Example here: 4 (spinor) of SO(5)

- 1) = chiral zero modes
- 2) <A₅> marries fields in same multiplet
- 3) SO(4) invariant brane mixings mix multiplets

$$\mathcal{L}_{IR} = -\left(\frac{R}{R'}\right)^4 \left[\tilde{m}_u \chi_{q_q} \psi_{q_u} + \tilde{m}_d \chi_{q_q} \psi_{q_d} + \tilde{M}_u (\chi_{u_q^c} \psi_{u_u^c} + \chi_{d_q^c} \psi_{d_u^c}) + \tilde{M}_d (\chi_{u_q^c} \psi_{u_d^c} + \chi_{d_q^c} \psi_{d_d^c}) \right]$$

Effective mass terms pGB model


$$m_{u}^{SM} = \frac{g_{*}v}{2\sqrt{2}} H_{q} f_{q} (\tilde{m}_{u} - \tilde{M}_{u}) f_{-u} H_{u}$$

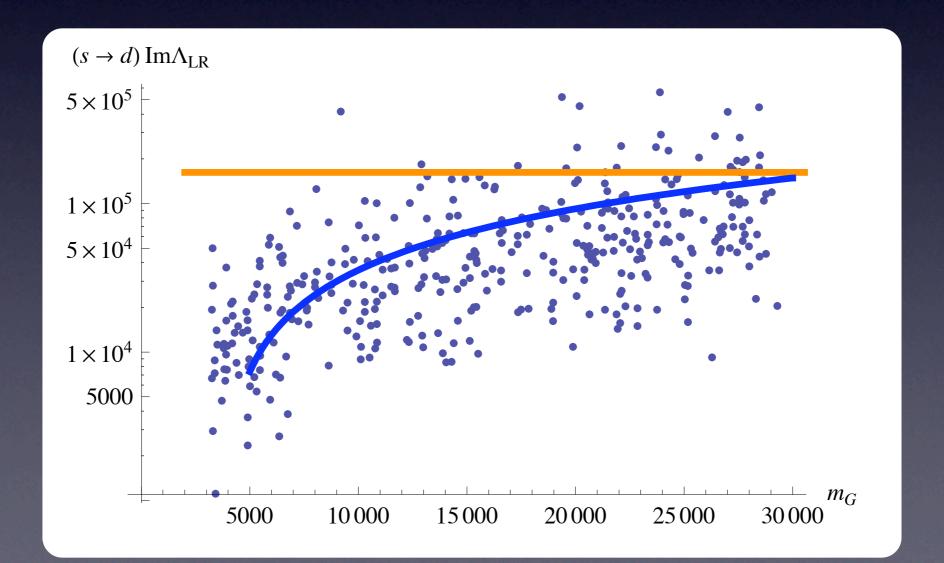
$$m_{d}^{SM} = \frac{g_{*}v}{2\sqrt{2}} H_{q} f_{q} (\tilde{m}_{d} - \tilde{M}_{d}) f_{-d} H_{d}$$

Effective 4 fermi operators

Csaki, Falkowski, AW

Integrating out the KK gluon

$$\mathcal{H} = \frac{1}{M_G^2} \left[\frac{1}{6} g_L^{ij} g_L^{kl} (\bar{q}_L^{i\alpha} \gamma_\mu q_{L\alpha}^j) (\bar{q}_L^{k\beta} \gamma^\mu q_{L\beta}^l) - g_R^{ij} g_L^{kl} \left((\bar{q}_R^{i\alpha} q_{L\alpha}^k) (\bar{q}_L^{l\beta} q_{R\beta}^j) - \frac{1}{3} (\bar{q}_R^{i\alpha} q_{L\beta}^l) (\bar{q}_L^{k\beta} q_{R\alpha}^j) \right) \right]$$


$$= C^1(M_G) (\bar{q}_L^{i\alpha} \gamma_\mu q_{L\alpha}^j) (\bar{q}_L^{k\beta} \gamma^\mu q_{L\beta}^l) + C^4(M_G) (\bar{q}_R^{i\alpha} q_{L\alpha}^k) (\bar{q}_L^{l\beta} q_{R\beta}^j) + C^5(M_G) (\bar{q}_R^{i\alpha} q_{L\beta}^l) (\bar{q}_L^{k\beta} q_{R\alpha}^j)$$

$$C_{4K}^{RS} \sim \frac{g_{s*}^2}{M_G^2} f_{q_1} f_{q_2} f_{-d_1} f_{-d_2} \sim \frac{1}{M_G^2} \frac{g_{s*}^2}{Y_*^2} \frac{2m_d m_s}{v^2}$$

Four fermi operators

$$C_K^4 \sim \frac{1}{M_G^2} \frac{g_{s*}^2}{g_*^2} \frac{8m_d m_s}{v^2} \frac{1 + m^2}{\tilde{m}_d^2}$$

pGB worse than RS: $Y^* \leftrightarrow g^* / 2$, M_{KK}>30 TeV

Low KK scale w/o adding flavor structure

+ live with fine-tuned Yukawas (large radiative corrections)

Blanke, Buras, Dulling, Gori, AW; Casagrande, Goertz, Haisch, Neubert, Pfoh

or

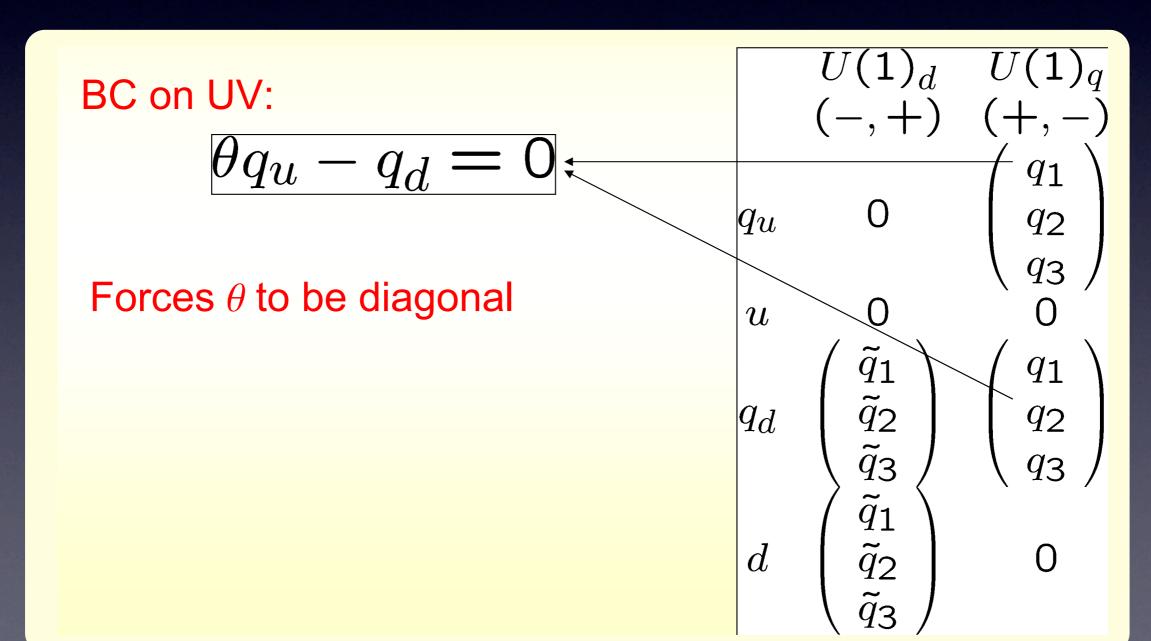
Agashe, Azatov, Zhu

+ bulk Higgs model (not applicable to pGB), push Yukawa to perturbative limit Y*> 6 and gs* as small as possible (I-loop matching)

$$M_{KK} > \frac{g_{s*}}{Y^*} \frac{\sqrt{2m_d m_s}}{v} \Lambda_4$$

With some tuning $M_{KK} \sim 5$ TeV possible Testable at LHC? Little hierarchy?

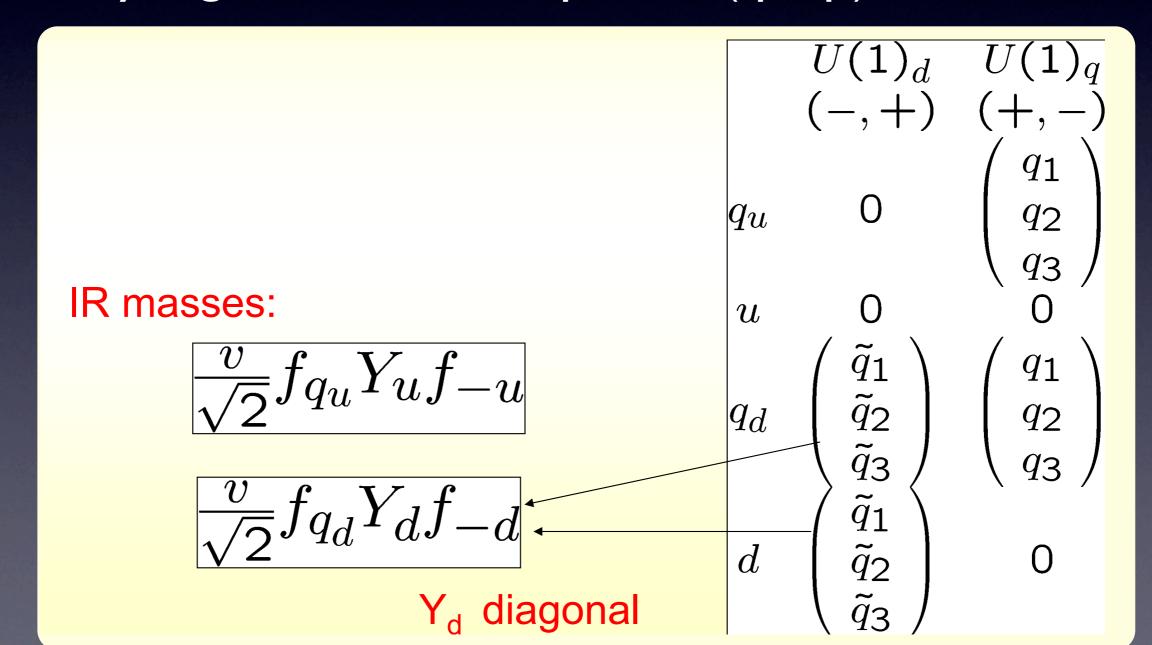
Low KK scale by adding flavor structure


Csaki, Falkowski, AW

+ Propose $U(I)_d \times U(I)_q$ for quark representation with custodial protection of $Z\underline{b}b$ of pGB Key ingredient: two rep.'s for (q_u, q_d) for Q_L

Low KK scale by adding flavor structure

Csaki, Falkowski, AW


+ Propose $U(I)_d \times U(I)_q$ for quark representation with custodial protection of $Z\underline{b}b$ of pGB Key ingredient: two rep.'s for (q_u, q_d) for Q_L

Low KK scale by adding flavor structure II

Csaki, Falkowski, AW

+ Propose $U(I)_d \times U(I)_q$ for quark representation with custodial protection of $Z\underline{b}b$ of pGB Key ingredient: two rep.'s for (q_u, q_d) for Q_L

Low KK scale by adding flavor structure II

Csaki, Falkowski, AW

+ Propose $U(I)_d \times U(I)_q$ for quark representation with custodial protection of $Z\underline{b}b$ of pGB Key ingredient: two rep.'s for (q_u, q_d) for Q_L

All flavor violation in up-sector, constraint from D- \underline{D} bar mixing: $M_{KK} > I \text{ TeV}$

 $U(I)_d \times U(I)_q$ gauge bosons give additional contributions, need them to be almost global $g_5^D < 1/50$ gQCD.

Conclusions

- RS GIM suppresses most of the dangerous FCNCs
- Contributions to \mathcal{E}_K with LR chirality typically too large
- Bulk Higgs $m_{KK} > 5$ TeV (best cases) Brane Higgs $m_{KK} > 11$ TeV pGB Higgs $m_{KK} > 15$ TeV
- Additional mechanisms needed, e.g. horizontal U(I)'s to allow $m_{KK} \sim I-2 \text{ TeV}$

Low KK scale by adding flavor structure

Cacciapaglia, Csaki, Galloway, Marandella, Terning, AW

+ exact GIM structure
flavor symmetry in bulk and IR brane, UV
kinetic terms generate flavor, no explanation
for fermion masses (likely the only way for
Higgsless)

Santiago

+ Minimal flavor protection bulk U(3) flavor symmetry in d_R sector (radiatively unstable)

Fitzpatrick, Randall, Perez

+ 5D MFV only two flavor spurions (Y_U,Y_D) Need to align bulk and brane matrices by hand. Can we really avoid tuning?